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Abstract. The magnitude of tool wear during the cutting process will affect machining
quality and efficiency. This paper uses cutting power as a feedback signal and combines
deep learning analysis to extract features to establish a cutting power monitoring system
to monitor the tool wear status in real time. Experiments show that under the same
cutting parameters, the cutting power increases with the increase of tool wear; and a
deep learning-based monitoring model between cutting power and tool wear is established.
The monitored wear value has a small error, and the tool wear can be monitored and
predicted in real time while the machining is running continuously.
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1. Introduction. GCr15 steel is high-carbon chromium-bearing steel, heat-treated and
processed with high hardness, high strength, good stability, and corrosion resistance [1],
has good performance, and has been widely used. In today’s smart manufacturing con-
text, the most important thing is to achieve automation, intelligence, and continuous
production of intelligent manufacturing systems, saving costs and improving efficiency
while ensuring processing quality. The tool is the key component of the cutting process in
smart manufacturing. Choosing various cutting parameters throughout the cutting pro-
cess will result in varying degrees of tool wear, which will negatively impact the tool life
and the processing quality of the parts [2]. When the cutting parameters and processing
conditions are consistent, tool wear becomes a decisive factor in the change of the sur-
face roughness of the workpiece [3]. When a tool wears reaches the threshold for failure,
failing to replace the tool will affect the surface quality, and premature tool replacement
can increase machining costs. Real-time tool wear monitoring may efficiently decrease
the amount of downtime caused by tool wear and improve the efficiency of machining
quality, preventing losses from tool wear [4]. Therefore, it is of great practical importance
to obtain machining signals through effective detection means to judge and control tool
wear in real-time during cutting and to take measures such as tool change or change of
cutting parameters for process continuity and real-time control of workpiece quality in
smart manufacturing, as well as tool wear control.

Tool wear detection techniques are classified as either direct or indirect depending on
how they are observed [5]. The measurement accuracy is high [6], but the inspection
equipment is not easily accessible to the cutting tool and the measurement accuracy is
highly susceptible to external factors such as cutting fluid, chips, and light, and cannot
provide continuous real-time process measurements. Therefore, direct measurement meth-
ods are not suitable for today’s intelligent manufacturing systems that Pay attention to
continuous processing. Indirect measurement refers to capturing physical signals related
to tool wear, which are generated by the machine tool or tooling [7], such as vibration sig-
nals during machining [8], cutting force signals [9], acoustic emission signals [10], current
and power signals [7] and other physical signals. Physical signals can be obtained without
machine downtime, tool wear can be monitored in real-time and inspection data can be
updated in real-time. However, the indirect detection method requires the installation
of corresponding signal sensors in different locations of the machine tool, which also has
certain limitations. Such as cutting force sensor devices need to be retrofitted for each
machining process, the cost increases; vibration sensors due to safety factors, can only be
installed at a certain distance from the spindle position, reducing the measurement accu-
racy; acoustic emission is sensitive to the impact of noise in the machining environment,
the analysis is difficult.

In contrast, the power signal is considered to be one of the most suitable of the many
detection signals for real-time tool wear detection. The power signal sensor is mounted on
the power supply, does not affect the machining operation, and is not affected by factors
such as cutting fluid. Therefore, real-time monitoring of tool wear during the cutting
process using cutting power is a reasonable solution. Stavropoulos et al. [11] examined
the correlation between power and vibration and tool wear and showed that power had a
stronger correlation with tool wear than a vibration. Shao et al. [12] created a cutting
power model for average return tool wear milling. To monitor tool wear, they used a power
threshold method. Hassan et al. [13] proposed a generic multiple-signal fusion technique
that uses raw spindle motor power, voltage, and torque signals to detect tool wear in real-
time. Most studies have monitored tool wear by total power, while cutting power, which
is directly related to tool wear, is only a small percentage of total power [14]. Few studies
have examined the effect of tool wear on cutting power during machining. Therefore, this
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paper establishes a cutting power monitoring system based on a deep learning algorithm
for tool wear status by removing the power signals that are not relevant for tool wear
detection from the total power, which reflects the tool wear status using the real-time
fluctuation of cutting power during machine tool machining. Monitoring accuracy of
tool wear can be improved by using this system, provide reference data for the selection
of optimal cutting conditions and the optimization of cutting parameters, and provide
technical support for reducing tool costs and ensuring the machining quality of workpieces.

2. Power models.

2.1. Machine power model. Figure 1 illustrates how the power requirements for each
stage of the machine tool’s cutting process, including power on, spindle start, empty feed,
cutting, empty feed, standby, and shutdown, vary. The two stages are the cutting stage
and the non-cutting stage. The power of CNC machine tools is primarily standby power
during the non-cutting stage, whereas the cutting stage’s power signal is closely related
to the machining parameters and tool wear.

主
轴
正
转

进
给

Figure 1. Cutting power variation diagram

The overall power of the machine tool can be broken down into the power of the cutting
phase, the standby power, the spindle power, and the power of the process parameter as
well as other powers from the perspective of the entire cutting process of the machine
tool. The power gathered in this study represents the overall power used by the CNC
machine tool when performing signal machining. The standby power, no-load power (Pn),
and cutting power make up the machine tool’s total power consumption (Pt) (Pc). Pt is
the machine tool’s overall power consumption and is equal to the sum of all other powers.

Pt = Pn + Pc (1)

The cutting power Pc is related to the material of the workpiece and the depth of cut
during the cutting process and is expressed as

Pc = PQr (2)

where P is the theoretical cutting power and Qr is the material removal rate.
The material removal rate, which to some part reflects the load on the machine tool

during the cutting process [15], is the volume of material removed by the tool cutting in a
unit of time. Qr too much will accelerate tool wear and increase the load on the machine
tool, The rate of material removal is expressed in terms of

Qr = apaefzzn (3)
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where ap, ae, and fz are the cutting parameters; z is the number of teeth of the tool; n is
the spindle speed.

In practice, the no-load power Pn is not influenced by the state of wear of the tool
under the same cutting conditions, so the state of wear of the tool can be monitored more
accurately using the power signal alone.

2.2. Machining parameters and cutting power. Cutting parameters have an impact
on how cutting power varies, and cutting power and the variations in cutting speed, feed,
and depth of cut are closely related, and the relationship between the cutting power Pc

and the cutting parameters is
Pc = FcVc (4)

where Fc is the cutting force, Vc is the cutting speed, and

Vc =
πdn

1000
(5)

where Vc is the cutting speed, d is the diameter of the tool and n is the number of
revolutions of the spindle.

Equation 5 can be expressed as

Pc = CFa
XF
p V nF+1

c KF (6)

Where ap is the backdraft, f is the feed per revolution, CF , XF , Y F , nF , KF Cutting
force impact index.

It can be seen that as the cutting parameters change, the cutting power will change,
as shown in equation 3. Therefore, the relationship between cutting power, machining
parameters, and tool wear must be further investigated to detect tool wear, rather than
just studying cutting power and cutting parameters.

2.3. Cutting power and tool wear. The cutting power of CNC machine tools increases
in proportion to the amount of tool wear as the contact area between the tool and the
workpiece expands from linear contact to surface contact. The more tool wear, the larger
the direct contact area between the tool and the workpiece, the higher the contact friction
between the two, and the greater the cutting power. Related research shows that tool
wear generates cutting forces that can be expressed in two components{

FNW = HV B ∗ s
FFW = µFNW = µHV B ∗ s (7)

FNW is the radial force by the tool, FFW is the frictional force, H is the workpiece
hardness, V B is the amount of wear on the rear tool face, µ is the coefficient of friction
and s is the length of the war zone on the rear tool face.

As a result, the cutting power due to tool wear can be expressed as

Pc= F FWVc = µHV B ∗ sVc (8)

where Vc is the cutting speed.
The formula for the correlation between tool wear and cutting power is

V B =
Pc

µH ∗ sVc

(9)

3. Signal acquisition systems for deep learning. Deep learning is a deep structural
model based on neural network algorithms. In the field of tool wear monitoring, models
based on deep learning with power data processing and feature extraction capabilities and
high monitoring accuracy are used extensively. A convolutional neural network in a deep
learning model is used to monitor tool wear in this paper.



1470 B. Liu, W. Li, J. Wang, Z.-W. Guo, X.-Y. Wei and T.-H. Wang

3.1. Power signal acquisition and pre-processing. The current research process for
monitoring and predicting tool wear can be divided into steps including signal capture,
data preparation, feature extraction, and model construction. The specific method is to
use a power collector to collect the relevant signals through different cutting parameters,
remove the influencing factors and then use deep learning to extract the signal features
and build a model to achieve the purpose of wear state identification. The specific process
is shown in Figure 2.

Figure 2. Tool wear model building process

In terms of the tool wear process, There are three stages of tool wear: initial wear,
normal wear, and rapid wear [16]. To monitor the tool wear state at different stages
by the change of the power signal, a signal acquisition system was set up, as shown in
Figure 3, consisting of two modules, a hardware part, and a software part. Identifying
and predicting tool wear is the ultimate goal.

Figure 3. Power signal acquisition system

The external environment interferes with the data collected by the power signal acquisi-
tion system. The collected power signals need to be pre-processed to improve the quality
of the acquisition, the accuracy of the calculation and to ensure accurate extraction of
the tool wear condition characteristics. The invalid signals at the beginning and end of
the data are removed and the maximum value is set to a threshold value, keeping only
the valid cutting power data.
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3.2. Deep learning to extract signal features. During the cutting operation, a power
sensor records the cutting power signal. A deep learning technique is then used to extract
the signal characteristics of the cutting power. The data is then downscaled to produce
the cutting power’s energy spectrum as input to the model [17, 18, 19, 20]. After each cut,
the tool is passed through a microscope to observe and measure the wear on its back face,
and the measured wear data is also input into the model. The tool wear is processed by the
convolution kernel in the convolution layer to generate a feature curve, which is compressed
by the pooling layer and fed into the fully connected layer for wear classification. Tool
wear monitoring and prediction can be achieved by feeding the real-time power signal into
the model. Figure 4 shows the basic process of tool wears monitoring based on the deep
learning model.

Figure 4. Deep learning process diagram

An iteration of the cutting tool signal features and their extraction results can be
expressed as 

Cq =
∑n

i=1(|xi|−X̄)4

X̄

Cf = Xmax

x̄
Ce =

xmax

xf

(10)

where Cq, Cf , and Ce are the signal cliff factor, pulse factor, and margin factor of the
cutting tool respectively; n is the number of extracted features; Xrms is the root mean
square of the signal; xi is the input sample signal; Xi, Xmax, Xr are the mean, maximum
and root square amplitude of the sampled signal respectively.

The frequency characteristics of the tool during the cutting process are expressed as

fz =
Ns

60
(11)

where Ns is the spindle speed.
The amplitude spectrum, phase spectrum, and power spectrum are also frequency do-

main features of the cutting tool signal and can be calculated by the Fourier transform.
Based on this, the feature extraction results are dimensionalized using a deep learning
algorithm, and the average activation of the j-th node on the hidden layer in the deep
confidence network is defined as

ρj =
1

n

n∑
i=1

hj (xi) (12)

where hj (xi) is the activation function of the corresponding feature of signal xi.
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To ensure that the calculated ρj does not deviate from the sparsity parameter, a sparsity
penalty factor is added to the cost function and the initial features are fed into the deep
learning algorithm, resulting in a final result that is the dimensionality reduction of the
tool cutting power signal features.

4. Cutting experiments.

4.1. Experimental platform construction. To study the cutting power signal for tool
wear monitoring, an experimental platform was built to support the study based on the
cutting power acquisition system, as shown in Figure 5. A CNC lathe manufactured
by Yunnan Machine Tool Factory is used in the system, and the built cutting power
monitoring system (PM9833A three-phase power monitor, signal converter, CNC lathe,
and host computer from Dongguan Nap Electronic Technology Co. The three-phase power
monitor collects the signals of voltage, current and active power of the CNC lathe under
different cutting parameters, converts them into digital signals, and transmits them to
the upper computer for data recording. The test object chosen for the study was a YT15
carbide tool, consisting of an insert and a tool holder, with the same tool holder and using
different tools for an experiment. To avoid other factors affecting the results, the tools
were initially tested as new and without surface wear.

e ea

Figure 5. Experimental system

4.2. Experimental design. During the cutting process, the PM9833A three-phase power
monitor mounted on the machine’s power supply selects the voltage signal, the current
signal, and the power as the sampling signals, with an integration sampling frequency of
1 second/time. The tool wear value after each cut was observed and measured using an
optical microscope, and the average value of the cutting force was extracted in the time
domain. Four factors were selected as experimental variables in the experiment, namely
cutting speed, depth of cut, feed, and tool wear. The experiments were conducted sepa-
rately with four level values of the single factor group. The first group was a univariate
experiment with cutting speed at tool wear of 0.0386mm, depth of cut of 0.1mm, and feed
of 0.1; the second group was a univariate experiment with depth of cut at cutting speed of
60m/min and feed of 0.125mm; the third group was a univariate experiment with cutting
speed of 70m/min, wear of 0.0386mm and univariate analysis of the depth of cut.125mm
with 0.0386mm tool wear; the third group was a univariate experiment with 70m/min
cutting speed, 0.0386mm wear and univariate analysis of the depth of cut at 70m/min
cutting speed and 0.1mm depth of cut. The fourth, fifth, and sixth groups of experiments
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were univariate experiments with a cutting tool with 0.1537mm wear, and the experimen-
tal variables were the same as the first, second, and third groups; the seventh, eighth,
and ninth groups were repeated univariate experiments with a tool with 0.3235mm wear,
and the experimental variables were the same as the first, second and third groups. The
four factors mentioned above will be studied separately for their influence on the cutting
power signal, and the collected power signal will be used as the research object. The
results of single factor experiments are shown in Table 1.

Table 1. Results of the one-way experiment

No.
Amount of wear Cutting speed Depth of

Feeds
Total No-load Cutting

and tear (mm) (m/min) cut (mm) power power power
1

0.0386

50
0.1 0.1

1194.82 892.17 302.65
2 60 1318.73 966.95 351.78
3 70 1427.46 972.12 455.34
4

60
0.1

0.125
1324.01 962.3 361.71

5 0.15 1332.46 952.85 379.61
6 0.2 1341.16 947.34 393.82
7

70 0.2
0.1 1448.36 963.26 485.1

8 0.125 1460.84 972.47 488.37
9 0.15 1462.47 970.09 492.38
10

0.1537

50
0.1 0.1

1259.77 892.07 367.7
11 60 1428.61 935.15 493.46
12 70 1561.03 998.69 562.34
13

60
0.1

0.125
1438.98 958.34 480.64

14 0.15 1463.7 958.64 505.06
15 0.2 1490.48 965.4 525.08
16

70 0.2
0.1 1538.44 1001.31 537.13

17 0.125 1565.9 976.46 589.44
18 0.15 1567.89 970.95 596.94
19

0.3235

50
0.1 0.1

1344.41 892.07 452.34
20 60 1484.09 902.11 581.98
21 70 1531.98 892.72 639.26
22

60
0.1

0.125
1406.84 898.12 508.72

23 0.15 1422.46 847.64 574.82
24 0.2 1439.85 853.73 586.12
25

70 0.2
0.1 1608.43 988.97 619.46

26 0.125 1610.45 978.62 631.83
27 0.15 1611.28 967.58 643.7

4.3. One-factor experiment analysis of results. The cutting power variation curve
based on the data in Table 1 is depicted in Figure 6. A single-factor experiment was
conducted to determine the average total power consumed by the tool at various cutting
parameters.

As can be seen from Figures 6A, 6B, and 6C, the greatest impact of cutting speed
on power is observed. The total power consumed by the machine tool increases with
the rise in depth of cut, machining efficiency rises with the rise in feed, and the total
power consumed by the machine tool increases with the rise in cutting speed for the same
amount of tool wear.
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Figure 6. Variation of the effect of tool wear on the total power consumed
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Figure 7. Graph showing the effect of tool wear on cutting power

From Figures 7A, 7B, and 7C can be seen, in addition to the influence of no-load power
on. In different tool wear situations, the cutting power change law and the total power
change law will remain the same, and the cutting power change will be more obvious.
With the cutting speed of 50 ∼ 70 m/min increase, the cutting performance followed by
a significant increase, the cutting speed of 70 m/min cutting performance is the largest;
With the increase in feed, cutting power slowly rises, that cutting power by the feed
increase in the impact of less; With the cutting depth increases, cutting power increases
the smallest, that cutting power by the cutting depth increases the smallest impact.
According to the above analysis: cutting parameters in the three factors on the impact of
cutting power, cutting speed is the largest, the feed amount is the second, and the depth
of cut is the smallest.

4.4. Analysis of orthogonal test results. To compensate for the shortcomings of the
single-factor experimental method, orthogonal experiments were designed to investigate
the variation of cutting performance under the influence of four factors in combination
with the actual process parameters. Table 2 shows the results of the orthogonal experi-
ments.

As shown in Figure 8A, the total power is smallest and increases quickly at 0.0386 mm
tool wear; it increases steadily at 0.1537 mm tool wear; and it is largest and increases
rapidly at 0.3235 mm tool wear. As tool wear increases, so does cutting performance.
The basic rule is the same as the rule of variation between tool wear in single-factor
experiments. It can be seen that cutting parameters and tool wear together to affect the
cutting performance, with cutting speed > feed >depth of cut in the order of influence.
Both cutting parameters and tool wear to increase the cutting performance and the trend
is consistent with the single-factor effect.
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Table 2. Table of factor levels for orthogonal experiments

No.
Amount of wear Cutting speed Depth of

Feeds
Total No-load Cutting

and tear (mm) (m/min) cut (mm) power power power
1 0.0386 50 0.1 0.1 1329.8 1041.3 288.5
2 0.0386 60 0.15 0.125 1401.85 997.52 404.33
3 0.0386 70 0.2 0.15 1477.46 988.74 488.72
4 0.1537 50 0.1 0.1 1337.89 979.21 358.68
5 0.1537 60 0.15 0.125 1443.43 947.85 495.58
6 0.1537 70 0.2 0.15 1548.42 965.09 583.33
7 0.3235 50 0.1 0.1 1343.33 914.56 428.77
8 0.3235 60 0.15 0.125 1448.17 932.2 515.97
9 0.3235 70 0.2 0.15 1608.13 986.73 621.4
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Figure 8. Effect of orthogonal experimental factors on power

5. Analysis of cutting power and tool wear.

5.1. Tool wear Analysis. The dulling standard for carbide tools specifies a wear amount
of 0.3mm on the rear face of the tool [3]. Because the amount of wear generated by
the tool’s interaction with the workpiece during machining is very small and cannot be
measured with the naked eye or conventional methods, a 3D digital microscope was used
in this experiment to measure and read the wear area and size of the wear on the tool’s
rear face. Figure 9 depicts the tool’s wear at 0.0386mm, 0.1537mm, 0.2605mm, and
0.3235mm.

c Tool wear of 0.2605 mm d Tool wear of 0.3235 mm

Figure 9a depicts the tool’s initial wear stage (wear amount 0.0386mm): The contact
area between the tool and the workpiece surface is tiny at this stage, and the cutting
force is focused in the tooltip region, the tool surface will fall off quickly, the friction



1476 B. Liu, W. Li, J. Wang, Z.-W. Guo, X.-Y. Wei and T.-H. Wang

c Tool wear of 0.2605 mm d Tool wear of 0.3235 mm

Figure 9. Graph showing wear of different tools

between the tooltip and the machining surface forms abrasive wear, also in the case of
high-temperature forms bonded wear; Figure 9b shows the normal wear stage of the tool
(wear amount 0.1537mm): Currently, the tool and the job The contact area expands, tool
wear decreases, wear is more uniform, and cutting power grows more smoothly.

Figure 9c shows the rapid wear stage (wear amount 0.2605mm): when the tool wear
amount rises to a certain level, the rate of wear will rise rapidly, resulting in a rise in the
surface roughness of the workpiece, a drop in cutting quality and a rapid rise in cutting
power; Figure 9d has a wear amount of 0.3235mm: more than 0.3mm above the tool wear
standard. At this stage the surface roughness of the workpiece drops significantly, affecting
workpiece quality, generating tool tremors, cutting power as well as cutting temperature
is extremely unstable. The entire tool wear process is shown in Figure 10, where the
instrument goes through three stages of wear to meet the wear standard: beginning wear,
regular wear, and accelerated wear. g g , g ,

Figure 10. Typical curve of tool wear

5.2. Effect of tool wear on cutting power. The power detector can monitor signal
characteristics such as three-phase electrical voltage, current, active power, reactive power,
and apparent power without changing the structure of the machine tool itself and at a
cheaper cost than other signal collection equipment. The power signal is gathered using
a deep learning analysis and processing system, which first analyzes the whole power
signal of the machine tool, then removes no-load power, obtains cutting power directly
connected to tool wear, and improves signal accuracy.; the power data will be imported
into the deep learning model to learn, analysis and extraction of different signal features
reflecting different tool wear amount, to achieve the purpose of monitoring and predicting
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tool wear. The power monitoring system is far more convenient and cost-effective than
other monitoring systems in use and does not affect the continuity of the machining
system. Single-factor and orthogonal experiments were carried out to collect the relevant
power signal data, and the effect of tool wear on cutting the power after processing is
shown in Figure 11.

a One-factor experiment b Orthogonal experiment

Figure 11. Curve of the effect of tool wear on cutting power

As shown in Figure 11, experiments were carried out at cutting depths of 0.1mm and
feeds of 0.1, and at cutting speeds of 50m/min, 60m/min, and 70m/min respectively. The
experiments showed that the cutting power was lowest at a cutting speed of 50m/min
and increased with wear, from 302.65w to 452.34w; at a cutting speed of 60m/min, the
increase in cutting power slowed down, from 351.78w to 581.98w; at a cutting speed of
70m/min, the increase in cutting power slowed down further, from This indicates that the
cutting power is greatest at a cutting speed of 70m/min with the same amount of wear
and that the cutting power increases with the increase in cutting speed. Under the same
cutting parameters, with the rise of tool wear, cutting power increases with the increase
of tool wear, tool wear, and cutting power are positively correlated.

5.3. Predictive model for cutting power on tool wear. According to an exami-
nation of the experimental data, as tool rear face wear grows, so does the amount of
contact between that surface and the workpiece, which in turn raises friction force and,
eventually, cutting power. Deep learning algorithms are used in the prediction process to
learn from the experimental data. Data on tool wear and cutting power obtained from
the experiments are evaluated, features are extracted and dimensionality is reduced and
transformed to obtain a power spectrum map, which is used as input to the model in deep
learning. Tool wear is processed through a convolution layer, feature curves are generated,
input to the connectivity layer, and wear is classified. When the real-time cutting power
signal is fed into the predicting model, real-time tool wears monitoring and prediction
can be achieved. A cutting power-based tool wear prediction model is developed. The
following equations are used.

V Brt = −0.154 + 4.4× 10−4Pc + 4.28× 10−7Pc (13)

where V Brt is the real-time tool wear value during tool cutting and Pc is the real-time
cutting power.

5.4. Experiment. Experiments were conducted to validate the tool wear prediction
model developed in section 4.3 and to confirm its correctness. The data was analyzed
using the deep learning method in 2.2 after the power signal was obtained by the collec-
tion mechanism of 2.1 and the tool wear was measured under a microscope. Figure 12
depicts the ultimate cutting power fluctuation, whereas Figure 13 depicts the tool wear
variation.
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The tool wear variation curve likewise goes through three stages quick rise, slow rise,
and sharp rise, in line with the traditional tool wear variation curve, as illustrated in
Figures 12 and 13. The cutting power curve exhibits three stages of rapid rise, slow rise,
and rapid rise with cutting time.
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Regression analysis was performed on cutting performance and tool wear as shown in
Figure 14, and analyzed linearly, logarithmically, and exponentially. The final fit was
made to the cutting performance and tool wear. Analysis of the fitted curves for the
measured and predicted values of cutting power and tool wear, as shown in Figure 15,
shows that the measured and predicted values are within a small error and are very precise.

6. Conclusion. To regulate machining quality while lowering safety risks and quality
expenses resulting from tool wear, it is necessary to detect tool wear in real-time. In this
paper, a cutting power monitoring system is established using cutting power and deep
learning techniques. The system can receive the cutting power signal of the machine tool
being used in production in real time as a feedback signal, analyze the signal using deep
learning to extract features, and then use the features to monitor and forecast tool wear
in real-time.

As the cutting parameters increase, the machine’s overall power consumption rises.
The cutting speed has the greatest impact on this power variation, followed by the feed
and the depth of the cut. Cutting power is influenced by both cutting parameters and
tool wear, and fixed cutting parameters can be used to track and anticipate tool wear
based on cutting power. The established cutting power-based tool wear model has been
validated experimentally to show that the prediction model has low prediction error and
high accuracy. The system provides real-time information on tool wear and parameters
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during machining and timely replacement of worn tools, providing technical support for
workpiece machining quality.

Future research will focus on the use of cutting power signals or the deep integration
of multi-signal fusion and depth algorithms to enable more accurate and faster tool wear
monitoring results and accurate prediction of tool life.
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